Senin, 21 Juni 2010

Proses Adiabatik

Dalam proses adiabatik tidak ada kalor yang masuk (diserap) ataupun keluar (dilepaskan) oleh sistem (Q = 0). Dengan demikian, usaha yang dilakukan gas sama dengan perubahan energi dalamnya (W = U).

Jika suatu sistem berisi gas yang mula-mula mempunyai tekanan dan volume masing-masing p1 dan V1 mengalami proses adiabatik sehingga tekanan dan volume gas berubah menjadi p2 dan V2, usaha yang dilakukan gas dapat dinyatakan sebagai

pers06Dimana γ adalah konstanta yang diperoleh perbandingan kapasitas kalor molar gas pada tekanan dan volume konstan dan mempunyai nilai yang lebih besar dari 1 (γ > 1).

341px-adiabaticsvg

Proses adiabatik dapat digambarkan dalam grafik pV dengan bentuk kurva yang mirip dengan grafik pV pada proses isotermik namun dengan kelengkungan yang lebih curam.

proses isobarik

Proses Isobarik

Jika gas melakukan proses termodinamika dengan menjaga tekanan tetap konstan, gas dikatakan melakukan proses isobarik. Karena gas berada dalam tekanan konstan, gas melakukan usaha (W = pV). Kalor di sini dapat dinyatakan sebagai kalor gas pada tekanan konstan Qp. Berdasarkan hukum I termodinamika, pada proses isobarik berlaku

pers05Sebelumnya telah dituliskan bahwa perubahan energi dalam sama dengan kalor yang diserap gas pada volume konstan

QV =U

Dari sini usaha gas dapat dinyatakan sebagai

W = QpQV

Jadi, usaha yang dilakukan oleh gas (W) dapat dinyatakan sebagai selisih energi (kalor) yang diserap gas pada tekanan konstan (Qp) dengan energi (kalor) yang diserap gas pada volume konstan (QV).

diag11

termodinamika 2

hukum termodinaka 2

Sebuah sistem termodinamika

Termodinamika (bahasa Yunani: thermos = 'panas' and dynamic = 'perubahan') adalah fisika energi , panas, kerja, entropi dan kespontanan proses. Termodinamika berhubungan dekat dengan mekanika statistik di mana banyak hubungan termodinamika berasal.

Pada sistem di mana terjadi proses perubahan wujud atau pertukaran energi, termodinamika klasik tidak berhubungan dengan kinetika reaksi (kecepatan suatu proses reaksi berlangsung). Karena alasan ini, penggunaan istilah "termodinamika" biasanya merujuk pada termodinamika setimbang. Dengan hubungan ini, konsep utama dalam termodinamika adalah proses kuasistatik, yang diidealkan, proses "super pelan". Proses termodinamika bergantung-waktu dipelajari dalam termodinamika tak-setimbang.

Karena termodinamika tidak berhubungan dengan konsep waktu, telah diusulkan bahwa termodinamika setimbang seharusnya dinamakan termostatik.

Sistem termodinamika

Sistem termodinamika adalah bagian dari jagat raya yang diperhitungkan. Sebuah batasan yang nyata atau imajinasi memisahkan sistem dengan jagat raya, yang disebut lingkungan. Klasifikasi sistem termodinamika berdasarkan pada sifat batas sistem-lingkungan dan perpindahan materi, kalor dan entropi antara sistem dan lingkungan.

Ada tiga jenis sistem berdasarkan jenis pertukaran yang terjadi antara sistem dan lingkungan:

  • sistem terisolasi: tak terjadi pertukaran panas, benda atau kerja dengan lingkungan. Contoh dari sistem terisolasi adalah wadah terisolasi, seperti tabung gas terisolasi.
  • sistem tertutup: terjadi pertukaran energi (panas dan kerja) tetapi tidak terjadi pertukaran benda dengan lingkungan. Rumah hijau adalah contoh dari sistem tertutup di mana terjadi pertukaran panas tetapi tidak terjadi pertukaran kerja dengan lingkungan. Apakah suatu sistem terjadi pertukaran panas, kerja atau keduanya biasanya dipertimbangkan sebagai sifat pembatasnya:
    • pembatas adiabatik: tidak memperbolehkan pertukaran panas.
    • pembatas rigid: tidak memperbolehkan pertukaran kerja.
  • sistem terbuka: terjadi pertukaran energi (panas dan kerja) dan benda dengan lingkungannya. Sebuah pembatas memperbolehkan pertukaran benda disebut permeabel. Samudra merupakan contoh dari sistem terbuka.

Dalam kenyataan, sebuah sistem tidak dapat terisolasi sepenuhnya dari lingkungan, karena pasti ada terjadi sedikit pencampuran, meskipun hanya penerimaan sedikit penarikan gravitasi. Dalam analisis sistem terisolasi, energi yang masuk ke sistem sama dengan energi yang keluar dari sistem.

Keadaan termodinamika

Ketika sistem dalam keadaan seimbang dalam kondisi yang ditentukan, ini disebut dalam keadaan pasti (atau keadaan sistem).

Untuk keadaan termodinamika tertentu, banyak sifat dari sistem dispesifikasikan. Properti yang tidak tergantung dengan jalur di mana sistem itu membentuk keadaan tersebut, disebut fungsi keadaan dari sistem. Bagian selanjutnya dalam seksi ini hanya mempertimbangkan properti, yang merupakan fungsi keadaan.

Jumlah properti minimal yang harus dispesifikasikan untuk menjelaskan keadaan dari sistem tertentu ditentukan oleh Hukum fase Gibbs. Biasanya seseorang berhadapan dengan properti sistem yang lebih besar, dari jumlah minimal tersebut.

Pengembangan hubungan antara properti dari keadaan yang berlainan dimungkinkan. Persamaan keadaan adalah contoh dari hubungan tersebut.

Hukum-hukum Dasar Termodinamika

Terdapat empat Hukum Dasar yang berlaku di dalam sistem termodinamika, yaitu:

  • Hukum Awal (Zeroth Law) Termodinamika
Hukum ini menyatakan bahwa dua sistem dalam keadaan setimbang dengan sistem ketiga, maka ketiganya dalam saling setimbang satu dengan lainnya.
  • Hukum Pertama Termodinamika
Hukum ini terkait dengan kekekalan energi. Hukum ini menyatakan perubahan energi dalam dari suatu sistem termodinamika tertutup sama dengan total dari jumlah energi kalor yang disuplai ke dalam sistem dan kerja yang dilakukan terhadap sistem.
  • Hukum kedua Termodinamika
Hukum kedua termodinamika terkait dengan entropi. Hukum ini menyatakan bahwa total entropi dari suatu sistem termodinamika terisolasi cenderung untuk meningkat seiring dengan meningkatnya waktu, mendekati nilai maksimumnya.

Hukum termodinamika kebenarannya sangat umum, dan hukum-hukum ini tidak bergantung kepada rincian dari interaksi atau sistem yang diteliti. Ini berarti mereka dapat diterapkan ke sistem di mana seseorang tidak tahu apa pun kecual perimbangan transfer energi dan wujud di antara mereka dan lingkungan.

Kamis, 10 Juni 2010

hukum I termodinamika

  1. Hukum ini diterapkan pada gas, khususnya gas ideal

    PV = n R T

    P . DV + -V . DP = n R DT

  2. Energi adalah kekal, jika diperhitungkan semua bentuk energi yang timbul.

  3. Usaha tidak diperoleh jika tidak diberi energi dari luar.

  4. Dalam suatu sistem berlaku persamaan termodinamika I:

    D
    Q = DU+ DW


    D
    Q = kalor yang diserap
    DU = perubanan energi dalam
    DW = usaha (kerja) luar yang dilakukan

DARI PERSAMAAN TERMODINAMIKA I DAPAT DIJABARKAN:

  1. Pada proses isobarik (tekanan tetap) ® DP = 0; sehingga,

    D
    W = P . DV = P (V2 - V1) ® P. DV = n .R DT

    DQ = n . Cp . DT ® maka Cp = 5/2 R (kalor jenis pada tekanan tetap)
    DU-= 3/2 n . R . DT

  2. Pada proses isokhorik (Volume tetap) ® DV =O; sehingga,

    DW = 0 ® DQ = DU

    DQ = n . Cv . DT ® maka Cv = 3/2 R (kalor jenis pada volume tetap)
    AU = 3/2 n . R . DT


  3. Pada proses isotermik (temperatur tetap): ® DT = 0 ;sehingga,

    DU = 0 ® DQ = DW = nRT ln (V2/V1)

  4. Pada proses adiabatik (tidak ada pertukaran kalor antara sistem dengan sekelilingnya) ® DQ = 0 Berlaku hubungan::

    PVg = konstan ® g = Cp/Cv ,disebut konstanta Laplace


Catatan:

  • Jika sistem menerima panas, maka sistem akan melakukan kerja dan energi akan naik. Sehingga DQ, DW ® (+).

  • Jika sistem menerima kerja, maka sistem akan mengeluarkan panas dan energi dalam akan turun. Sehingga DQ, DW ® (-).

    1. Untuk gas monoatomik (He, Ne, dll), energi dalam (U) gas adalah

      U = Ek = 3/2 nRT ® g
      = 1,67

    2. Untuk gas diatomik (H2, N2, dll), energi dalam (U) gas adalah

      Suhu rendah
      (T £ 100ºK)

      U = Ek = 3/2 nRT ® g = 1,67

      ® Cp-CV=R

      Suhu sedang

      U = Ek =5/2 nRT ® g = 1,67

      Suhu tinggi
      (T > 5000ºK)

      U = Ek = 7/2 nRT ® g = 1,67